If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=7165
We move all terms to the left:
x^2-(7165)=0
a = 1; b = 0; c = -7165;
Δ = b2-4ac
Δ = 02-4·1·(-7165)
Δ = 28660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28660}=\sqrt{4*7165}=\sqrt{4}*\sqrt{7165}=2\sqrt{7165}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{7165}}{2*1}=\frac{0-2\sqrt{7165}}{2} =-\frac{2\sqrt{7165}}{2} =-\sqrt{7165} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{7165}}{2*1}=\frac{0+2\sqrt{7165}}{2} =\frac{2\sqrt{7165}}{2} =\sqrt{7165} $
| -3x-30=2(5x-2) | | 9x2−225=0 | | 9x+3=42 | | -5+3z=8 | | x5=7165 | | 2/3y-10=4/5+11 | | 4^x=2^6 | | 1=n+8/4 | | 12r=1/6 | | 3x2+23x−7.5=0 | | -2(u+1)=u-1+2(3u+7) | | 7+2(2x-2)=-3(4x-3)+6x | | -4(-4+3)-7v=3(v-2)-9 | | -4(2y-9)+2y=4(y+5) | | 2(y-4)=2y+2-4(-3y-1) | | 9h+20=100 | | -2(2u-6)+2u=5(5u-4) | | 2(v-4)-4=-3(-7v+2)-4v | | -4(5u-6)+6u=4(u+9) | | -4(w+2)=w-5+3(3w+1) | | -n-5=-11 | | x√5=7165 | | -2(7u-8)+6u=4+2(4u-3) | | -3y+1=25 | | 4u+2-2(-5u-2)=4(u-3) | | 4(v+3)=-2(5v-4)+6v | | 9x-23+7x+9=180 | | 0=36+37x+7x^2 | | y=0.0076 | | 17-4x=x+2 | | z+81-4z=11z-7-6z | | 10+4=2x+5x |